If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2-3u-15=0
a = 6; b = -3; c = -15;
Δ = b2-4ac
Δ = -32-4·6·(-15)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{41}}{2*6}=\frac{3-3\sqrt{41}}{12} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{41}}{2*6}=\frac{3+3\sqrt{41}}{12} $
| 75=0.05x(x+2) | | 75=0.05r(r+20) | | d-1/12=5/15 | | 6=-12+(h/(-7)) | | 2x–3=4x+1 | | 6u^2+5u-15=0 | | (9x+74)=92 | | 10x-7=-10+9 | | 62/5=x/7 | | 3x+4=4x–23x+4=4x-3 | | -13x-7=(-176) | | 6x-7=3x-4-x | | -13x-7 = -176 | | 5x–7=3x–4–x | | 8x+17 = 65 | | 3(x+3)=51 | | 12.3x-3.4=1.028 | | (5v-30)(v^2-7v+6)=0 | | 3(y-1)=7y-23 | | -2(-1/3)-y=3 | | 9x-1=9x+72 | | 10x²=12x-7 | | 12/5c=7 | | 9×-6=3(2+x)+6 | | 23y-46+y=4y-40 | | 84=1/3x | | 0.0000013=4x.0.1x | | 3x+2(-3+2x)=-3 | | 8x+10•2=12x+40 | | 169=-13h | | 5.1+2.1=-y | | 5(3y+4)=-24 |